In this talk, we apply the parametric linear programming technique and pseudo metrics to study the quantitative stability of the two-stage stochastic linear programming problem with full random recourse. Under the simultaneous perturbation of the cost vector, coefficient matrix and right-hand side vector, we firstly establish the locally Lipschitz continuity of the optimal value function and the boundedness of optimal solutions of parametric linear programs. On the basis of these results, we deduce the locally Lipschitz continuity and the upper bound estimation of the objective function of the two-stage stochastic linear programming problem with full random recourse. Then by adopting different pseudo metrics, we obtain the quantitative stability results of two-stage stochastic linear programs with full random recourse which improve the current results under the partial randomness in the second stage problem. Furthermore, we extend the quantitative stability results to two kinds of mean-risk models induced by two-stage stochastic programming models. Finally, we apply these stability results to the empirical approximation of the two-stage stochastic programming model.